Characterization of Catalyst for Coal Liquefaction. Exchange of Hydrogen Attached to Condensed Aromatics with Deuterium in Heavy Water over Catalyst

Tetsuro Yokono,* Taro Kohno, and Yuzo Sanada Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo 060 (Received June 23, 1984)

Synopsis. The H-D exchange reaction of hydrogen atoms attached to condensed aromatics with deuterium atoms in D₂O over catalyst for coal liquefaction was studied by means of D-NMR. MoO₃/ZrO₂, MoO₃/SiO₂, Fe₂O₃-SO₄², SbCl₃ and ZnCl₂ showed a significant catalytic activity for the exchange reaction. The H-D exchange ability was discussed in terms of the acidic properties and concentration of Mo⁵⁺ over supports for coal liquefaction catalysts.

There is a continuing interest in the surface properties of catalyst, particularly in their acid strength, the number and nature of the active sites, and the question of how the activity at these sites can be controlled by chemical or physical treatment.

Little detailed information is available about catalytic activity of catalysts at high temperatures. effect of the surface properties of catalysts on their role in coal liquefaction remains unclear. previous ESR study in the anthracene/ZnCl₂/H₂O system^{1,2)} suggested that an exchange reaction takes place between the hydrogen atoms in H2O which is adsorbed on ZnCl2 and the hydrogen atoms in anthracene (which is a model compound of coal). Furthermore, the hydrogen transfer reaction is known to play an important role in coal liquefaction and hydrogen exchange is one of these hydrogen transfer reactions. Thus the object of this study, as a model reaction for coal liquefaction, is to examine the H-D exchange reaction between the hydrogen atoms attached to condensed aromatics and the deuterium atoms in D2O over metal oxide and metal chloride catalysts at high temperature by means of D-NMR.

Experimental

The metal oxide catalysts selected were as follows: MoO₃-SiO₂, MoO₃-ZrO₂, MoO₃-MgO, Fe₂O₃ and Fe₂O₃-SO²₄-. These catalysts were prepared and supplied by Drs. K. Tanabe and H. Hattori, the Faculty of Science, Hokkaido University.³⁾ ZnCl₂ and SbCl₃ of guaranteed grade, as Lewis acid catalysts, were used for the experiments without further purification. Anthracene of G. R. grade was used as a model compound of coal.

Anthracene, catalyst and D₂O (molar ratio; 1:1:10) were mixed and sealed in a Pyrex tube reactor (10 mm diam× 500 mm) and heated in a vertical i.r. image furnace at a given temperature for a given time and then rapidly quenched. The heating rate was 10 K/min. The product was extracted with CHCl₃ in a ultrasonic vibrater. D-NMR spectra of the CHCl₃ soluble materials were obtained at room temperature using a Varian XL-200 spectrometer.

The ESR spectra of Mo⁵⁺ ions in the Mo-containing catalysts were obtained using a Varian E109 spectrometer employing 100 kHz modulation and a nominal operating

frequency of 9 GHz.

Results and Discussion

Molybdenum Containing Catalyst Systems. Several metal oxide catalysts with different acidities were tested with respect to the H-D exchange reaction. The D-NMR spectrum of the product from the anthracene/MoO₃-ZrO₂/D₂O system which was allowed to react at 573 K for 15 min is shown in It is apparent that the H-D exchange Fig. la. reaction takes place over an acidic catalyst, MoO₃-ZrO₂. Assignment of deuterium atoms attached to anthracene is made by comparison with the proton chemical shifts of anthracene.4) A similar spectrum was observed when MoO₃-SiO₂ was used. On the other hand, no significant exchange reaction was observed for the basic catalyst MoO₃-MgO, as shown in Fig. 1b.

The fact that MoO₃-ZrO₂ and MoO₃-SiO₂ are more active than MoO₃-MgO for the H-D exchange reaction might be explained by a great ability of ZrO₂ and SiO₂ to reduce MoO₃ to form lower bonding stages of Mo, such active species as Mo⁵⁺, Mo⁴⁺ and so on.⁵⁾ Since Mo⁵⁺ is a paramagnetic

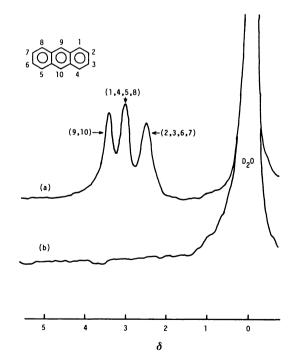


Fig. 1. D-NMR spectra of products from Anthracene/ Catalyst/D₂O system.

- (a): Anthracene/MoO₃-ZrO₂/D₂O 573 K, 15 min,
- (b): Anthracene/MoO₃-MgO/D₂O 573 K, 15 min.

Table 1. Catalytic activity of ${\rm MoO_3}$ over metal oxides for H–D exchange reaction on anthracene and their ${\rm Mo^{5+}}$ concentration

Catalyst	Exchanged product	Mo ⁵⁺ spin concentration (spins/g)
MoO ₃ /ZrO	8.3	2.52×10 ¹⁹
MoO ₃ /SiO ₃	8.2	1.42×10^{19}
MoO ₃ /MgO	0.0	0.77×10^{19}

species, it is detectable by ESR spectroscopy.² Table 1 shows the correlation between the propotion of the deuterium atoms incorporated in anthracene by the H-D exchange reaction and the Mo⁵⁺ spin concentrations in Mo-containing catalysts. The presence of reduced form of Mo species may be responsible for the H-D exchange reaction.

Iron Oxide Catalyst Systems. Fe₂O₃ is one of the most promising catalysts for the coal liquefaction process, because iron oxides and iron ore are disposable catalysts. One modification of Fe₂O₃ catalyst was attempted by including SO₄²⁻ ions.^{3,6} The Fe₂O₃-SO₄²⁻ catalyst showed higher activity and selectivity for the liquefaction of both Akabira coal and Taiheiyo coal than those of pure Fe₂O₃ catalyst.⁶

The effect of SO₄² ion in Fe₂O₃ catalyst on coal liquefaction may be partly due to the increase in acid strength of catalyst. Therefore, it can be expected that SO₄² ion in Fe₂O₃ catalyst has an influence on the H-D exchange reaction of the anthracene/Fe₂O₃/D₂O system. In fact, evidence of such influence on the exchange reaction was obtained from the D-NMR spectrum of the product from the Fe₂O₃-SO₄²/anthracene/D₂O system which was allowed to react at 573 K for 15 min. On the other hand, any evidence of the H-D exchange reaction could not be obtained for pure Fe₂O₃ catalyst system.

Lewis Acid Catalyst Systems. Available evidence about metal chloride catalysts⁷⁾ suggests that Lewis acids first convert to Brönsted acids in the presence of water. Therefore, one can easily invoke a direct adduct of Lewis acid and anthracene as the intermediate allowing the H-D exchange. This consideration was confirmed directly by means of D-NMR for Lewis acid catalysts (SbCl₃, ZnCl₂) with anthracene.

The D-NMR spectrum of the product from the anthracene/ZnCl₂/D₂O system which was allowed to react at 483 K for 15 min is shown in Fig. 2a. It can be seen that the deuterium atoms are especially concentrated at the (9, 10) positions of anthracene. Fig. 2b indicates that a significant H-D exchange reaction also takes place over SbCl₃ catalyst, mainly at the (9, 10) and (1, 4, 5, 8) positions of the nuclei of anthracene.

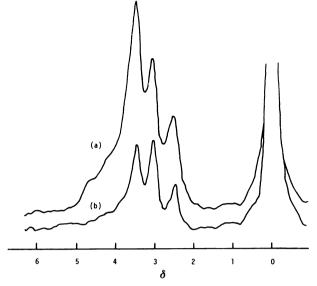


Fig. 2. D-NMR spectra of products from Anthracene/ Lewis acid catalyst/D₂O system. (a): Anthracene/ZnCl₂/D₂O 483 K, 15 min, (b):

Anthracene/SbCl₃/D₂O 418 K, 15 min.

The deuterium distribution differs clearly from the case of the ZnCl₂ catalyst.

The D-NMR investigation of the H-D exchange reaction was extended to various polynuclear aromatics such as perylene, pyrene, phenathrene, benz-[a]anthracene and naphthacene. Among the hydrocarbons so far tested, phenanthrene had the highest degree of H-D exchange reaction with respect to ZnCl₂ catalyst.

References

- 1) T. Kohno, T. Yokono, and Y. Sanada, The 45th National meeting of the Chemical Society of Japan, Tokyo, April, 1982, Abstr. No. 2X17.
- 2) T. Yokono, T. Kohno, Y. Sanada, E. Yamada, and S. Shimokawa, The 46th National Meeting of the Chemical Society of Japan, Niigata, October 1982, Abstr. No. 2E16.
- 3) K. Tanabe, A. Kayo, and T. Yamaguchi, J. Chem. Soc., Chem. Commun., 1981, 602.
- 4) P. Dirhl, "Nuclear Magnetic Resonance Spectroscopy of Nuclei Other than Protons," ed by T. Axenrod and G. A. Webb, John Wiley & Sone, Inc., New York (1974) pp. 275—285.
- 5) M. Niwa, M. Mizutani, M. Takahashi, and Y. Murakami, J. Catal., 70, 14 (1981).
- 6) K. Tanabe, H. Hattori, T. Yamaguchi, S. Yokoyama, J. Umematsu, and Y. Sanada, Fuel, 61, 389 (1982); Fuel Processing Tech., 8, 117 (1984).
- 7) C. W. Zielke, R. T. Struck, J. M. Evans, C. P. Constanza, and E. Gorin, *Ind. Eng. Chem.*, *Prod. Res. Dev.*, 5, 155 (1966).